Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-168353

ABSTRACT

Every one of us has heard about tragic and sudden death of a healthy young person and which is often stated as ‘inexplicable’. The current case report focuses on a 20 year old young man with hypertrophic cardiomyopathy facing premature death with history of similar sudden premature death of his grandmother, father and brother. Hypertrophic cardiomyopathy is the commonest cause of sudden cardiac death in young adults and is also an important substrate for heart failure disability at any age.

2.
Indian J Biochem Biophys ; 2014 Dec ; 51 (6): 531-541
Article in English | IMSEAR | ID: sea-156534

ABSTRACT

In visceral leishmaniasis, a fragmentary IL-12 driven type 1 immune response along with the expansion of IL-10 producing T-cells correlates with parasite burden and pathogenesis. Successful immunotherapy involves both suppression of IL-10 production and enhancement of IL-12 and nitric oxide (NO) production. As custodians of the innate immunity, the toll-like receptors (TLRs) constitute the first line of defense against invading pathogens. The TLR-signaling cascade initiated following innate recognition of microbes shapes the adaptive immune response. Whereas numerous studies have correlated parasite control to the adaptive response in Leishmania infection, growing body of evidence suggests that the activation of the innate immune response also plays a pivotal role in disease pathogenicity. In this study, using a TLR4 agonist, a Leishmania donovani (LD) derived 29 kDa β 1,4 galactose terminal glycoprotein (GP29), we demonstrated that the TLR adaptor myeloid differentiation primary response protein-88 (MyD88) was essential for optimal immunity following LD infection. Treatment of LD-infected cells with GP29 stimulated the production of IL-12 and NO while suppressing IL-10 production. Treatment of LD-infected cells with GP29 also induced the degradation of IKB and the nuclear translocation of NF-kB, as well as rapid phosphorylation of p38 MAPK and p54/56 JNK. Knockdown of TLR4 or MYD88 using siRNA showed reduced inflammatory response to GP29 in LD-infected cells. Biochemical inhibition of p38 MAPK, JNK or NF-kB, but not p42/44 ERK, reduced GP29-induced IL-12 and NO production in LD-infected cells. These results suggested a potential role for the TLR4-MyD88–IL-12 pathway to induce adaptive immune responses to LD infection that culminated in an effective control of intracellular parasite replication.


Subject(s)
Animals , Down-Regulation/immunology , Immunity, Cellular/immunology , Interleukin-10/immunology , Leishmania donovani/enzymology , Leishmania donovani/immunology , Leishmaniasis/immunology , Leishmaniasis/pathology , Macrophage Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Th1 Cells/immunology , Toll-Like Receptor 4/immunology
3.
Indian J Biochem Biophys ; 2014 Dec ; 51(6): 449-456
Article in English | IMSEAR | ID: sea-156523

ABSTRACT

Aneurysms develop as a result of chronic inflammation of vascular bed, where progressive destruction of structural proteins, especially elastin and collagen of smooth muscle cells has been shown to manifest. The underlying mechanisms are an increase in local production of proinflammatory cytokines and subsequent increase in proteases, especially matrix metalloproteinases (MMPs) that degrade the structural proteins. The plasminogen system: urokinase-type PA (u-PA), tissue-type PA (t-PA) and plasminogen activator inhibitor-1 (PAI-1) and the MMPs system-MMPs and TIMPs contribute to the progression and development of aneurysms. Recent studies suggest that aneurysms may be genetically determined. To date, most observable candidate genes for aneurysm (elastin, collagen, fibrillin, MMPs and TIMPs) have been explored with little substantiation of the underlying cause and effect. Recently, overexpression of the MMP-2 gene has been suggested as an important phenomenon for aneurysm formation. Along with MMPs, matrix formation also depends on JNK (c-Jun N-terminal kinase) as its activation plays important role in downregulating several genes of matrix production. Under stress, activation of JNK by various stimuli, such as angiotensin II, tumor necrosis factor-α and interleukin-1β has been noted significantly in vascular smooth muscle cells. Several therapeutic indications corroborate that inhibition of MMP-2 and JNK is useful in preventing progression of vascular aneurysms. This review deals with the role of proteases in the progression of vascular aneurysm.


Subject(s)
Aneurysm/immunology , Animals , Blood Vessels/immunology , Cytokines/immunology , Enzyme Activation , Models, Cardiovascular , Models, Immunological , Peptide Hydrolases/immunology , Signal Transduction/immunology
4.
Indian J Biochem Biophys ; 2013 Oct; 50(5): 363-376
Article in English | IMSEAR | ID: sea-150246

ABSTRACT

Leishmaniasis is a deadly protozoan parasitic disease affecting millions of people worldwide. The treatment strategy of Leishmania infection depends exclusively on chemotherapy till date. But the treatment of the disease is greatly hampered due to high cost, toxicity of the available drugs and more importantly emergence of drug resistance. Hence the potential new drugs are highly needed to combat this disease. The first and foremost step of the drug discovery process is to search and select the putative target in a specific biological pathway in the parasite that should be either unambiguously absent in the host or considerably different from the host homolog. Importantly, Leishmania genome sequences enrich our knowledge about Leishmania and simultaneously reinforce us to identify the ideal drug targets that distinctly exist in the parasite as well as to develop the effective drugs for leishmaniasis. Though the leishmanial research has significantly progressed during the past two decades, the identification of suitable drug targets or development of effective drugs to combat leishmaniasis is far from satisfactory. Enzymatic systems of Leishmania metabolic and biochemical pathways are essential for their survival and infection. Concurrently, it is noteworthy that Leishmania proteases, especially the cysteine proteases, metalloproteases and serine proteases have been extensively investigated and found to be indispensable for the survival of the parasites and disease pathogenesis. Herein, we have discussed the importance of few enzymes, particularly the Leishmania proteases and their inhibitors as promising candidates for potential development of anti-leishmanial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Discovery/methods , Leishmania/drug effects , Leishmania/physiology , Leishmaniasis/drug therapy , Molecular Targeted Therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use
5.
Indian J Biochem Biophys ; 2012 Oct; 49(5): 316-328
Article in English | IMSEAR | ID: sea-143553

ABSTRACT

The number of mammalian calpain protease family members has grown as many as 15 till recent count. Although initially described as a cytosolic protease, calpains have now been found in almost all subcellular locations i.e., from mitochondria to endoplasmic reticulum and from caveolae to Golgi bodies. Importantly, some calpains do not possess the 28 kDa regulatory subunit and have only the 80 kDa catalytic subunit. In some instances, the 80 kDa subunit by itself confers the calpain proteolytic activity. Calpains have been shown to be involved in a number of physiological processes such as cell cycle progression, remodeling of cytoskeletal-cell membrane attachments, signal transduction, gene expression and apoptosis. Recent studies have linked calpain deficiencies or it’s over production with a variety of diseases, such as muscular dystrophies, gastropathy, diabetes, Alzheimer’s and Parkinson’s diseases, atherosclerosis and pulmonary hypertension. Herein, we present a brief overview on some implications of calpains on human health and some diseases.


Subject(s)
Calcium , Calcium-Binding Proteins , Calpain/deficiency , Apoptosis , Disease/etiology , Health , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL